

Automated Non-invasive Analysis of Motile Sperms Using Cross-scale Guidance Network

Wei Dai, Zixuan Wu, Jiaqi Wang, Rui Liu, Min Wang, Tianyi Wu, Junxian Zhou, Zhuoran Zhang, and Jun Liu

PhD Student **May 16, 2024**

 $\left($ Anthony) Wei DAI Centre for Robotics and Automation & Department of Mechanical Engineering, City University of Hong Kong

Multiscale Automation and Robotics Laboratory

In vitro fertilization (IVF)

~15% couples are infertile

• ~113 million infertile population *Lancet*, 2016

- > 8 million IVF children born *ICMART*, 2018
- \$25 billion market as 2019
- \$41 billion market by 2026 *www.economist.com/business/2019/08/08*

US treatment cycles China treatment cycles

Male Infertility

- Male fertility problems contribute to 30% of infertility cases (You et al. 2021).
- The morphology and motility of sperm are critical for male fertility.

• Manual inspection and selection are laborious.

Automated sperm analysis

Conventional computer vision:

- Kalman filter, track sperm head [1]
- Differential interference contrast (DIC), identify sperm mophology [2]

(Liu et al., TBME, 2012). (Dai et al., TMI, 2018).

Automated sperm analysis

Machine-learning-based computer vision:

- UNet , sperm head segmentation.
- YOLO, track sperm head.

Challenges and Contributions

Problems and Challenges

- Morphology and motility are not analyzed simultaneously.
- Averaged sperms per image are less as magnification increases.
- Dyes and fluorescences make sperms clinically unavailable.
- Too small to be detected. Less than 1% area ratio of a petri dish under 20× objective lens.

Main Contributions

- Introduce a novel architecture that alleviate compression artifacts.
- Measure sperm's morphology and motility simultaneously.
- Analyze sperm in a non-invasive manner at 20x objectives.

System Setup

Mcirorobotic cell manipulation System

Nikon microscope with 20× objective lens, CMOS camera, 3-DOF micromanipulator (MP-285).

Motivation

Information loss during processing

Main component: **cross-scale feature map guide**

Speed \times 1.5

Coarse Medium Dense

Error Analysis

Visualisation of segmentation ground truth (a) and segmentation results using (b) ResNet50 + DeepLabV3, (c) SegNet, (d) UNet,(e) UNet++, and **(f) CSG Network + DeepLabV3**.

Segmentation quantity results

- Achieved highest mIoU of 51.89%.
- Exceeding 21% and 32% for normal and abnormal sperm segmentation

Segmentation IoU and mIoU (Unit:%) for various methods. $IoU = TP / (TP + FP + FN)$.

Sperm No.3 is the only healthy sperm

TABLE II: AUTOMATED QUANTIFICATION OF FIVE SPERM SAMPLES (AU: ARBITRARY UNIT).

Conclusion and Future Work

Conclusion

- Outperformed other SOTA methods by over **3.59%** mIoU.
- Selected the healthy sperm among samples non-invasively.

General small medical object detection

Images of Small Medical Objects Segmentation Results

Clifford Librach Iryna Kuznyetsova Khaled Abdalla Sergey Moskovtsev Sahar Jahangiri Cheryl Ethier Zenon Ibarrientos Viola Kajendrakumar Sadrosadat Zeinab Julia Louis

Keith Jarvi Susan Law Brendan Mullen Farid Abolhassani

KKids

Xi Huang Xin Chen Xian Wang

